C(1b)	-0.3078 (8)	0.0914 (7)	-0.0976 (7)	0.038 (3)
C(2a)	0.2843 (8)	0.2441 (7)	-0.0247 (6)	0.036 (3)
C(2b)	0.2698 (10)	0.3808 (8)	-0.0809 (8)	0.052 (4)
C(3a)	-0.3585 (8)	0.0082 (7)	0.2256 (6)	0.033 (3)
C(3b)	-0.3737 (9)	-0.0341 (8)	0.3594 (7)	0.046 (4)
C(4a)	-0.1535 (8)	0.3664 (6)	-0.0428 (6)	0.033 (3)
C(4b)	-0.3175 (10)	0.3758 (8)	-0.0447 (8)	0.053 (4)
C(5a)	0.0298 (8)	0.0229 (7)	0.3358 (6)	0.034 (3)
C(5b)	0.1901 (9)	0.0172 (8)	0.3497 (7)	0.046 (4)
C(6a)	0.4600 (15)	0.3257 (14)	-0.3575 (9)	0.100 (7)
C(6b)	0.5930 (15)	0.3845 (14)	-0.3691 (12)	0.095 (7)
C(7a)	0.0741 (10)	0.2969 (8)	0.3864 (8)	0.058 (4)
C(7b)	0.0191 (15)	0.3870 (12)	0.4341 (12)	0.115 (7)
C(8a)	-0.3580 (8)	0.2778 (7)	0.3456 (7)	0.041 (3)
C(8b)	-0.5115 (9)	0.3076 (9)	0.3212 (8)	0.057 (4)

Table 2. Selected geometric parameters (Å, °)

	0	•	
[Ni2Sb4(C2H2C	D)16]	[Mn ₂ Sb ₄ (C ₂ H ₅)	(O)
Sb(1)-0(1)	2.313 (4)	Sb(1)-O(1)	2.311 (4)
Sb(1)-O(2)	1.996 (4)	Sb(1) - O(2)	1.994 (4)
Sb(1)-O(3')	1.987 (4)	Sb(1)—O(3')	1.998 (4)
Sb(1)O(6)	1.995 (5)	Sb(1)-O(6)	2.006 (5)
Sb(2)-O(4)	2.182 (5)	Sb(2)-O(4)	2.206 (4)
Sb(2)—O(5)	2.034 (4)	Sb(2)-O(5)	2.029 (4)
Sb(2) - O(7)	2.033 (5)	Sb(2) - O(7)	2.041 (5)
Sb(2)-0(8)	1,950 (5)	Sb(2) - O(8)	1 940 (5)
Ni(1) - O(1)	2.097 (4)	$M_n(1) = O(1)$	2,233 (4)
$N_{i}(1) = O(2)$	2 082 (5)	Mn(1) - O(2)	2 229 (4)
$N_{i}(1) = O(3)$	2,066 (4)	$M_{n}(1) = O(3)$	2.229(4)
$N_{i}(1) = O(4)$	2.000(4)	$M_n(1) - O(4)$	2 074 (4)
$N_{i}(1) = O(5)$	2.010(4) 2.117(4)	$M_{n}(1) = O(5)$	2 211 (4)
$O(1) \rightarrow C(1_{a})$	1446(8)	$\Omega(1) \rightarrow \Gamma(1_{d})$	1442(7)
O(2) = C(2a)	1 449 (8)	$O(2) \rightarrow C(2a)$	1 436 (8)
$O(3) \rightarrow C(3a)$	1 474 (8)	O(3) - C(3a)	1.457 (8)
O(4) - C(4a)	1 420 (8)	O(4) - C(4a)	1 427 (8)
$O(5) \rightarrow C(5a)$	1 434 (8)	O(5) - C(5a)	1 445 (8)
O(6) - C(6a)	1.431 (10)	O(6) - C(6a)	1 379 (10)
$O(7) \rightarrow C(7a)$	1.407(10)	$O(7) \rightarrow C(7a)$	1 399 (9)
O(8) - C(8a)	1.427 (9)	O(8) - C(8a)	1 425 (8)
	72.0 (2)		751(0)
O(1) - Sb(1) - O(2)	73.9 (2)	O(1) - Sb(1) - O(2)	75.1 (2)
O(1) - SD(1) - O(3')	/3./(2)	$O(1) = Sb(1) = O(3^{\circ})$	/4.0 (2)
O(1) - Sb(1) - O(6)	153.1 (2)	O(1) - Sb(1) - O(6)	154.8 (2)
$O(2) \longrightarrow SD(1) \longrightarrow O(3^{\circ})$	96.3 (2)	$O(2) = Sb(1) = O(3^{\circ})$	96.2 (2)
O(2) = SD(1) = O(6)	87.7(2)	O(2) = SD(1) = O(6)	87.2 (2)
$O(3^{\circ}) - SO(1) - O(6)$	89.4 (2)	O(3) = Sb(1) = O(6)	90.4 (2)
O(4) = Sb(2) = O(5)	72.2 (2)	O(4) - Sb(2) - O(5)	/2.8 (2)
O(4) - Sb(2) - O(7)	154.9 (2)	O(4) - Sb(2) - O(7)	156.6 (2)
O(4) - Sb(2) - O(8)	80.3 (2)	O(4) - Sb(2) - O(8)	80.7 (2)
O(5) - Sb(2) - O(7)	89.5 (2)	O(5) - Sb(2) - O(7)	89.9 (2)
O(5)—Sb(2)—O(8)	102.4 (2)	O(5) - Sb(2) - O(8)	100.5 (2)
O(7)—Sb(2)—O(8)	87.4 (2)	O(7)—Sb(2)—O(8)	87.3 (2)
$O(1) - N_1 - O(1')$	77.9 (2)	O(1) - Mn - O(1')	80.4 (2)
O(1)—Ni—O(2)	77.0 (2)	O(1)—Mn— $O(2)$	72.4 (2)
O(1') - Ni - O(2)	95.0(2)	O(1') - Mn - O(2)	96.4 (2)
O(1)—Ni—O(3)	98.0 (2)	O(1)—Mn—O(3)	100.6 (2)
O(1') - Ni - O(3)	76.9 (2)	O(1') - Mn - O(3)	72.5 (2)
O(1)—Ni—O(4)	103.5 (2)	O(1) - Mn - O(4)	103.9 (2)
O(1') - Ni - O(4)	173.9 (2)	O(1') - Mn - O(4)	172.2 (2)
O(1) - Ni - O(5)	173.5 (2)	O(1)—Mn—O(5)	169.5 (2)
O(1')—Ni—O(5)	105.2 (2)	O(1') - Mn - O(5)	105.0 (2)
O(2) - Ni - O(3)	171.3 (2)	O(2)—Mn— $O(3)$	168.0 (2)
O(2)—Ni—O(4)	91.1 (2)	O(2) - Mn - O(4)	91.1 (2)
U(2)—Ni—O(5)	97.0 (2)	O(2)—Mn— $O(5)$	97.7 (2)
O(3)—Ni—O(4)	97.0 (2)	O(3)—Mn—O(4)	100.2 (2)
O(3)—Ni—O(5)	88.3 (2)	O(3)—Mn—O(5)	89.7 (2)
O(4)—Ni—O(5)	74.0(2)	O(4) - Mn - O(5)	71.9 (2)

The structure solution and the structural refinements were performed using *SHELXS*86 (Sheldrick, 1985) and *SHELX*76 (Sheldrick, 1976). Non-H atoms were refined with anisotropic displacement parameters, H atoms were refined isotropically with bond constraints of 1.00 Å between the C and H atoms. Geometric calculations of bond distances and bond angles were performed with *PLATON* (Spek, 1990). Molecular graphics were produced using *ORTEPII* (Johnson, 1976).

Our study of metal alkoxides is financially supported by the Swedish National Science Research Council.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and bond distances involving H atoms have been deposited with the IUCr (Reference: AB1151). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Bemm, U., Lashgari, K., Norrestam, R., Nygren, M. & Westin, G. (1993). J. Solid State Chem. 103, 366–374.

- Bemm, U., Norrestam, R., Nygren, M. & Westin, G. (1993). Inorg. Chem. 32, 1597–1600.
- Bradley, D. C., Mehrotra, R. C. & Gaur, D. P. (1978). In Metal Alkoxides. London: Academic Press.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.

Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structure. Univ. of Cambridge, England.

Spek, A. L. (1990). PLATON. Program for the Analysis of Molecular Geometry. Univ. of Utrecht, The Netherlands.

Acta Cryst. (1995). C51, 1263-1267

$[Mn_6O_2\{O_2C-3,5-(NO_2)_2-C_6H_3\}_{10}-(C_5H_5N)_2\{(CH_3)_2CO\}_2].2(CH_3)_2CO.-2(C_2H_5)_2O \text{ and } [Mn_6O_2(O_2CC_6H_5)_{10}-(NCCH_3)_4]$

MALCOLM A. HALCROW, WILLIAM E. STREIB, KIRSTEN FOLTING AND GEORGE CHRISTOU*

Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, IN 47405-4001, USA

(Received 10 March 1994; accepted 28 November 1994)

Abstract

The structures of di(acetone)tetrakis(μ^3 -3,5-dinitrobenzoato- $\kappa^2 O:\kappa O'$)hexakis(μ -3,5-dinitrobenzoato- $\kappa O:\kappa O'$)-di- μ^4 -oxo-di(pyridine)tetramanganese(II)dimanganese(III)-acetone-diethyl ether (1/2/2), (1), and tetrakis(acetonitrile)tetrakis(μ^3 -benzoato- $\kappa^2 O:\kappa O'$)hexakis-(μ -benzoato- $\kappa O:\kappa O'$)-di- μ^4 -oxo-tetramanganese(II)dimanganese(II), (2), are reported. Both compounds contain six octahedrally coordinated Mn centres, arranged as two Mn₂^{II}Mn₂^{III}(μ^4 -O) tetrahedra sharing the Mn^{III}-Mn^{III} edge.

Comment

The title compounds were obtained during our continuing research into manganese carboxylate chemistry (Christou, 1989). Both complexes contain the $Mn_6O_2(O_2CR)_{10}(L)_x$ (x = 4) structural motif previously observed in manganese benzoate and pivalate chemistry (x = 4; Baikie, Howes, Hursthouse, Quick & Thornton, 1986; Gerbeleu, Batsanov, Timko, Struchkov, Indrichan & Popovich, 1987; Schake, Vincent, Li, Boyd, Folting, Huffman, Hendrickson & Christou, 1989; Köhler, Roesky, Noltemeyer, Schmidt, Freire-Erdbrügger & Sheldrick, 1993: x = 5; Blackman, Huffman, Lobkovsky & Christou, 1992); since the distances and angles within the [Mn_6O_2] cores of (1) and (2) are identical to within 3σ , the structures will be considered together.

(1) R = 3,5-(NO₂)₂-C₆H₃; $L^1 = C_5H_5N$, $L^2 = OCMe_2$ (2) R = Ph; $L^1 = L^2 = NCMe$

The Mn aggregates in both structures possess crystallographic C_2 symmetry. The Mn^{II}₂ Mn^{III}₂ oxidation state assignment for the clusters is confirmed by examination of the bond lengths to the Mn centres: Mn(1)exhibits shorter Mn-O distances with a pronounced Jahn-Teller elongation along the (equivalent) O(5)-Mn(1)—O(65) and O(5)—Mn(1)—O(32) directions in (1) and (2), respectively, and was therefore assigned as the Mn^{III} site. The disposition of the peripheral carboxylate and terminal ligands is in the more commonly observed arrangement for these complexes, with four $\mu^3 - \kappa^2 O : \kappa O'$ and six $\mu^2 - O, O'$ carboxylate ligands and one terminal ligand per Mn^{II} centre (Schake, Vincent, Li, Boyd, Folting, Huffman, Hendrickson & Christou, 1989). The Mn-O(carboxylate) and Mn-N distances are unexceptional and identical to within 3σ in (1) and (2), despite the differences in carboxylate and terminal ligation between the two compounds; the cis- and trans-O-Mn-X (X = O, N) angles vary from 79 to 103° and from 163 to 176°, respectively, the Mn^{II} and Mn^{III} centres showing similar degrees of distortion from ideal octahedral geometry. The acetone ligand in (1) is coordinated in the bent geometry typically observed for first-row metal complexes of this ligand [Mn(2)-O(86) 2.192 (5), O(86)—C(87) 1.244 (10) Å, Mn(2)—O(86)— C(87) 136.7 (6)°] (Gambarotta, Pasquali, Floriani, Villa

& Guastini, 1981; di Vaira, Stoppioni & Mani, 1983; Smith, O'Reilly, Kennard, Mak & Yip, 1985; Zhang, Loebach, Wilson & Jacobsen, 1990). No close contacts are observed between the occluded solvent molecules in (1) and the Mn aggregate.

Fig. 1. An ORTEP (Johnson, 1965) representation of (1) showing 50% probability ellipsoids. For clarity, only the *ipso* C atoms of the 3,5-dinitrobenzoate phenyl groups are shown.

Fig. 2. An ORTEP (Johnson, 1965) representation of (2) showing 50% probability ellipsoids. For clarity, only the *ipso* C atoms of the benzoate phenyl groups are shown.

Experimental				O(5)	1.0496 (2)	0.1302 (2)	0.3065 (2)	2.1 (2)	
Complex (1) was prepared by the reaction of $M_{P}(O, CCU)$				O(7)	1.0231(3) 1.0283(2)	0.0938 (3)	0.3333(3) 0.1659(2)	2.5 (3)	
Complex (1) was prepared by the reaction of $Min(O_2CCH_3)_2$.				C(8)	1.0645 (3)	0.0548 (3)	0.3760 (3)	2.6 (3)	
4H20 W	$101 C5\Pi 51N, 5, 5$	$-(1NO_2)_2 - C_6 r$		BuawinO4 in	C(9)	1.0416 (3)	0.0152 (3)	0.4094 (3)	3.1 (3)
C ₂ H ₅ OF	1; crystals were	grown from	acetone/ethe	r. Compound	C(10)	1.0795 (4)	-0.0208 (3)	0.4480 (3)	3.3 (3)
(2) was	prepared by t	he reaction	of Ph ₄ P[Mn ₄]	$O_2(O_2CPh)_9$ -	C(11)	1.1388 (4)	-0.0190 (3)	0.4553 (3)	3.3 (3)
(OH_2)]	with $Na(2-Me_2)$	$N-C_6H_4CO_2$) in MeCN at	263 K.	C(12)	1.1599 (3)	0.0210 (3)	0.4217 (3)	2.8 (3)
Compo	and (1)				N(14)	1.1250(3) 1.0547(3)	-0.0576(3)	0.3827(3) 0.4844(3)	2.7(3)
Compor					O(15)	1.0025 (3)	-0.0597(2)	0.4822 (3)	5.0 (3)
Crystal d	data				O(16)	1.0877 (3)	-0.0965 (3)	0.5138 (3)	6.0 (3)
$[Mn_6O_2($	$(C_7H_3N_2O_6)_{10}$ -	Mo	$K\alpha$ radiation	L	N(17)	1.2238 (3)	0.0257 (3)	0.4287 (3)	3.7 (3)
(C ₅ H ₅	$N_{2}(C_{3}H_{6}O_{2})$	- λ=	= 0.71069 Å		O(18)	1.2548 (2)	-0.0002(2)	0.4711 (3)	4.5 (2)
2C ₃ H	60.2C₄H100	Ce	ll parameters	from 58	O(19)	1.2421(2) 1 1164(2)	0.0303(2) 0.2343(2)	0.3935 (3)	4.3 (2)
$M_{r} = 30$	11.50	1	reflections		C(21)	1.1618 (3)	0.2098 (3)	0.3396 (3)	2.0 (2)
Monocli	nic	θ =	= 9-14 5°		O(22)	1.1635 (2)	0.1712 (2)	0.3026 (2)	2.7 (2)
C^2/c			$= 0.687 \text{ mm}^{-1}$		C(23)	1.2179 (3)	0.2292 (3)	0.3796 (3)	2.4 (3)
a = 12.5	12 (4) Å	$\frac{\mu}{T}$ -	- 120 K		C(24)	1.2209 (3)	0.2801 (3)	0.4094 (3)	2.8 (3)
u = 23.3	P(2(4) A)	I - Irre	- 120 K	imataly	C(25) C(26)	1.2725 (3)	0.2952(3) 0.2614(4)	0.4496 (3)	3.0 (3)
D = 23.8	01 (4) A	III	guiai, appiox		C(27)	1.3166 (3)	0.2107(3)	0.4313 (3)	3.3 (3)
c = 22.4	-1/(4) A	0.0			C(28)	1.2664 (3)	0.1944 (3)	0.3905 (3)	3.1 (3)
$\beta = 103$.16(1)	0.2	$4 \times 0.24 \times 0$.24 mm	N(29)	1.2753 (3)	0.3494 (3)	0.4816 (3)	4.2 (3)
V = 1224	46 (3) A ³	Da	rk orange		O(30)	1.2342 (3)	0.3807 (3)	0.4681 (3)	6.3 (3)
Z = 4	2				O(31) N(32)	1.3186 (3)	0.3583 (3)	0.5228 (3)	5.4 (3)
$D_x = 1.6$	533 Mg m^{-3}				O(33)	1.4105 (3)	0.1737(3) 0.1880(3)	0.4423(3) 0.4807(4)	4.3 (3)
					O(34)	1.3642 (3)	0.1301 (3)	0.4149 (3)	6.7 (3)
Data col	llection				O(35)	1.0210 (2)	0.2106 (2)	0.3928 (2)	2.5 (1)
Dickor f	our airele diffre	atom A	- 22 5°		C(36)	0.9865 (3)	0.2355 (3)	0.4202 (3)	2.5 (2)
FICKEI IC	our-circle unita	$C_{\rm ma}$	x = 22.3		O(37)	1.0526 (2)	0.2692 (2)	0.1025 (2)	2.4 (1)
		<i>n</i> =	$0 \rightarrow 25$		C(39)	0.9960 (3)	0.2221(3) 0.2539(3)	0.48/5(3) 0.5243(3)	2.0 (2)
0-20 SCa	1115	κ =	$0 \rightarrow 24$		C(40)	0.9791 (4)	0.2416 (4)	0.5864 (3)	3.9 (3)
Absorpti	ion correction:	1 =	$0 \rightarrow 23$		C(41)	1.0151 (4)	0.1980 (4)	0.6118 (4)	5.3 (3)
none		4 s	tandard reflect	tions	C(42)	1.0416 (4)	0.1679 (4)	0.5736 (4)	4.3 (3)
10 025 r	neasured reflect	tions i	nonitored eve	ry 300	C(43) N(44)	1.0339 (3)	0.1803 (3)	0.5126 (3)	3.3 (3)
8032 inc	lependent reflec	tions	reflections		O(45)	0.9186 (3)	0.2730(3) 0.3134(3)	0.6036 (3)	5.4 (2)
6200 ob	served reflection	ns i	ntensity decay	/:	O(46)	0.9644 (4)	0.2649 (4)	0.6813 (3)	9.9 (4)
F>	$3\sigma(F)$]		insignificant		N(47)	1.0805 (4)	0.1212 (4)	0.5990 (4)	6.2 (3)
$R_{\rm int}=0.0$	035				O(48)	1.0709 (4)	0.0963 (3)	0.6452 (3)	7.8 (3)
р с					O(49) O(50)	1.1198 (3)	0.1078 (3)	0.5/43(3)	6.4 (3)
кеппете	ent				C(51)	1.1710 (3)	0.2234 (3)	0.1722 (3)	2.8 (2)
Refinem	ent on F	$\Delta \rho$	$p_{max} = 1.0 \text{ e} \text{ Å}$	-3	O(52)	1.1601 (2)	0.2646 (2)	0.2024 (2)	2.6 (2)
R = 0.06	585	$\Delta \mu$	$p_{min} = -0.5 e$	Å ⁻³	C(53)	1.2178 (3)	0.2327 (3)	0.1371 (3)	2.8 (2)
wR = 0.0	0666	Ext	inction correct	tion:	C(54) C(55)	1.2514 (3)	0.2811(3)	0.1458 (4)	3.4 (3)
S = 1.41	5	S	econdary, isot	ropic	C(55)	1.3057 (3)	0.2882(3) 0.2502(3)	0.1139(4) 0.0722(4)	3.3(3) 3.6(3)
6200 ref	lections	Ext	inction coefficient	cient:	C(57)	1.2706 (3)	0.2027 (3)	0.0636 (3)	3.4 (3)
889 para	meters	e	5.2×10^{-10}		C(58)	1.2269 (3)	0.1924 (3)	0.0950 (3)	3.2 (3)
Only H-a	atom B's refine	d Ato	mic scattering	2 factors	N(59)	1.3299 (3)	0.3407 (3)	0.1237 (4)	5.1 (3)
$w = 4F_o^2$	$J\sigma^2(F_0^2)$	f	rom Internatio	onal Tables	O(60)	1.3138 (3)	0.3/81(3)	0.1527 (3)	5.9(3)
$(\Delta/\sigma)_{ma}$	x = 0.048	f	or X-ray Crys	tallogranhy	N(62)	1.2772(3)	0.1642(3)	0.0333(3) 0.0147(3)	35(3)
() • /ma		j	1974 Vol IV)	O(63)	1.3174 (2)	0.1736 (2)	-0.0107(3)	4.3 (2)
		(1271, 101.11	/	O(64)	1.2422 (3)	0.1271 (2)	0.0002 (3)	4.3 (2)
T.I.I. 1					O(65)	0.9797 (2)	0.3129 (2)	0.1799 (2)	2.1 (1)
Table 1.	. Fractional d	ιιοπις cool	rainates and	equivalent	C(66)	0.9387 (3)	0.3469 (3)	0.1800 (3)	2.0(2)
iso	tropic displace	ement para	meters (Ų) f	for (1)	C(68)	0.9278(3)	0.3402(2) 0.3924(3)	0.2827(2) 0.1318(3)	2.0(1) 23(2)
	р ($1/2\sum \sum D$	* *		C(69)	0.9584 (3)	0.3908 (3)	0.0856 (3)	2.4 (2)
	$B_{eq} = ($	1/3)と _i とjB _{ij} a	$a_i^{\star}a_j^{\star}\mathbf{a}_i.\mathbf{a}_j.$		C(70)	0.9476 (3)	0.4336 (3)	0.0424 (3)	2.9 (2)
Atoma M	n(1) to $C(90)$ com	manana ta the			C(71)	0.9106 (3)	0.4770 (3)	0.0438 (3)	3.2 (2)
	$\Gamma(97)$ form a mo	lecule of acc	tone lying acres	aciest. Atoms	C(72) C(73)	0.8815 (3)	0.4772 (3)	0.0907 (4)	3.2 (2) 2 0 (2)
oranhic tu	vofold axis C(Q2	to $C(07) \approx \pi$	note up of digt	hvl ether on a	N(74)	0.0009(3) 0.9797(3)	0.4314(3)	-0.0075 (3)	2.9(2)
general position and $C(98)$ to $C(101)$ a disordered molecule of unknown			O(75)	1.0193 (2)	0.3971 (2)	-0.0032(2)	4.3 (2)		
solvent.		(101) u ula			O(76)	0.9649 (2)	0.4648 (2)	-0.0503 (2)	4.1 (2)
	*		-	D	N(77)	0.8432 (3)	0.5244 (3)	0.0955 (3)	4.7 (3)
Mn(1)	1.03390 (4)	9.22125 (4)	0.30982(4)	$\frac{D_{eq}}{1.91(3)}$	O(78) O(79)	0.8087 (3)	0.5005 (2)	0.0005 (3)	5.2 (2) 7 2 (3)
Mn(2)	1.09508 (5)	0.14326 (4)	0.22604 (5)	2.28 (3)	N(80)	1.1007 (2)	0.3817 (2)	0.1598 (2)	2.3 (2)
Mn(3)	1.07740 (4)	0.30021 (4)	0.19703 (4)	2.06 (3)	C(81)	1.0907 (3)	0.4316 (3)	0.1830 (3)	3.2 (2)
O(4)	1.0457 (2)	0.2212 (2)	0.2291 (2)	2.0 (1)	C(82)	1.1126 (4)	0.4808 (3)	0.1669 (4)	3.7 (2)

1266	1266 $[Mn_6O_2(C_7H_3N_2O_6)_{10}(C_5H_5N)_2(C_3H_6O)_2] \text{ AND } [Mn_6O_2(C_7H_5O_2)_{10}(C_2H_3N)_4]$								
C(83)	1 1462 (4)	0 4801 (3	a) 0 1239 (4)	3.9 (3)	$M_{\rm e} = 173$	6 99		Cell parameters f	rom 84
C(84)	1.1566 (3)	0.4294 (3	0.0994 (4)	3.4 (2)	Orthorho	mbio		reflections	
C(85)	1.1321 (3)	0.3822 (3	0,1182 (3)	3.1 (2)	Ormorno	more			
O(86)	1.1417 (2)	0.0631 (2	0.2411 (2)	3.8 (2)	Pona			$\theta = 8.3 - 13$	
C(87)	1.1643 (4)	0.0302 (4) 0.2103 (4)	4.8 (3)	a = 18.44	41 (3) A		$\mu = 0.962 \text{ mm}^{-1}$	
C(88)	1.1566 (5)	0.0363 (4	b) 0.1426 (5)	5.7 (3)	b = 24.50	51 (4) A		T = 103 K	
C(89)	1.2008 (5)	-0.0196 (4	b) 0.2390 (5)	6.5 (4)	c = 17.49	97 (3) Å		Needle	
O(90)	1	0.5021 (5	1/4	0.0 (5)	V = 7924	(2) Å ³		$0.34 \times 0.20 \times 0.00$	16 mm
C(91)	1	0.5313 (0	0 1/4 0 1927 (7)	5.2 (5) 6 8 (5)	Z = 4			Orange-brown	
C(92) C(93)	0.7052 (6)	0.1108 (6	0.2502(6)	5.0 (4)	$D_{2} = 1.4$	56 Mg m ^{-3}		0	
C(94)	0.6615 (6)	0.1543 (6	o) 0.2506 (6)	5.2 (5)	2, 10				
O(95)	0.6775 (3)	0.2025 (4	b) 0.2254 (4)	4.8 (3)					
C(96)	0.6422 (6)	0.2475 (7	7) 0.2262 (6)	6.1 (5)	Data col	lection			
C(97)	0.6653 (7)	0.2993 (7	7) 0.2027 (5)	6.4 (5)	Picker fo	ur-circle diffra	ictom-	$\theta_{\rm max} = 22.5^{\circ}$	
C(98)	1 0522 (10)	0.0436 (1	$ 0\rangle = 1/4$	0.9(7)	eter			$h = 0 \rightarrow 19$	
C(99) C(100)	1.0522 (10)	0.0055 (1	(0) = 0.2213(11) (13) = 0.2337(13)	83(7)	A_2A sca	ne		$k = 0 \rightarrow 26$	
C(100)	1.0200 (11)	0.1431 (1	$ 2\rangle = -0.2341 (12)$	8.1 (6)	A hoomati	an correction.		l = 0 + 20	
0(101)				(-)	Absorpti	on contection.		$t = 0 \rightarrow 10$	iona
					none			4 standard reflect	10115
Table	2. Selected	l geometric	c parameters (A, °)) for (1)	7929 me	asured reflection	ons	monitored ever	ry 300
Mn(1)-M	n(1 ⁱ)	2.790 (2)	Mn(2)—O(4)	2.203 (4)	5162 ind	ependent refle	ctions	reflections	
Mn(1)M	n(2)	3.208 (1)	Mn(2)—O(5)	2.319 (4)	3425 obs	served reflection	ns	intensity decay	:
Mn(1)—M	n(3 ⁱ)	3.200 (2)	Mn(2)—O(7)	2.156 (5)	[F>1]	$3\sigma(F)$]		insignificant	
Mn(1)—M	n(2 ¹)	3.492 (2)	Mn(2) - O(22)	2.173 (5)	$R_{\rm int}=0.0$)69			
Mn(1) - M	n(3) n(2)	3.488 (1)	Mn(2) = O(50) Mn(2) = O(86)	2.127 (5)					
Mn(2)M	n(3)	3.808 (1) 1.875 (4)	$M_{11}(2) = O(80)$ $M_{11}(3) = O(4)$	2.192 (3)	Dafaana				
Mn(1)	(4)	1.892 (4)	Mn(3) - O(37)	2.196 (4)	кејтете	2711			
Mn(1)	(5)	2.209 (4)	Mn(3)—O(52)	2.099 (4)	Refinem	ent on F		$(\Delta/\sigma)_{\rm max} = 0.02$	
Mn(1)—O	(20)	1.958 (4)	Mn(3)—O(65)	2.262 (4)	R = 0.07	5		$\Delta \rho_{\rm max} = 0.76 \ {\rm e}$	$Å^{-3}$
Mn(1)O	(35)	1.968 (4)	Mn(3)—O(67)	2.169 (4)	wR = 0.0	064		$\Delta \rho_{\rm min} = -0.79 \epsilon$	e Å−3
Mn(1) - O	(65')	2.231 (4)	Mn(3) - N(80)	2.232 (5)	S = 1.07	2		Extinction correct	tion: none
O(4)Mn	(1)—O(4 ⁱ)	84.43 (19)	O(4)-Mn(3)-N(80)	174.53 (19)	3425 ref	- lections		Atomic scattering	factors
O(4 ⁱ)—Mn	n(1)—O(5)	98.10 (17)	O(37)—Mn(3)—O(52)	87.60 (17)	/01 nars	meters		from Internati	onal Tables
O(4)—Mn	(1)—O(5)	84.62 (17)	O(37)— $Mn(3)$ — $O(65)$	81.06 (16)	491 pair		- d	for V ray Cry	tallography
$O(4^1)$ —Mn	(1) - O(20)	170.75 (19)	O(37)— $Mn(3)$ — $O(67)$	168.53 (18)	Only H-	atom B s renno	ea	JOF X-ray Crys	nanograpny
O(4)-Mn	(1) - 0(20)	94.12 (19)	O(37) - Mn(3) - N(80) O(52) - Mn(3) - O(65)	88.10 (18) 162 84 (17)	$w = 4F_o$	$\sigma^{2}(F_{o}^{-})$		(1974, VOI. 1V)
O(4) - Mn	(1) = 0(35)	172 54 (19)	O(52) - Mn(3) - O(03)	102.84(17) 100.46(18)					
$O(4^{i})$ Mr	$(1) - O(65^{i})$	84.11 (17)	O(52)—Mn(3)—N(80)	94.03 (19)					
O(4)—Mn	$(1) - O(65^{i})$	98.90 (17)	O(65)—Mn(3)—O(67)	92.76 (17)	Table 3	. Fractional	atomic .	coordinates and	l equivalent
O(5)—Mn	(1)—O(20)	90.84 (17)	O(65)—Mn(3)—N(80)	98.40 (18)	ise	otropic displa	cement r	parameters $(Å^2)$	for (2)
O(5)—Mn	(1)—O(35)	88.10 (17)	O(67)—Mn(3)—N(80)	83.23 (18)					,
O(5)—Mn	(1)—O(65 ¹)	176.04 (16)	Mn(1) - O(4) - Mn(1')	95.57 (19)	Bis	for C(42), B_{eq} =	$=(1/3)\Sigma_i$	$\sum_{i} B_{ii} a_{i}^{*} a_{i}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{i}$ for al	l others.
O(20)—M	n(1) - O(35)	87.58 (19)	Mn(1) = O(4) = Mn(2) Mn(1) = O(4) = Mn(2)	102.88 (10)	13	· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,	,,,,,,,	R: /R
O(35)-M	n(1) = O(05)	88 43 (17)	Mn(1) = O(4) = Mn(2) $Mn(1^{i}) = O(4) = Mn(3)$	102.88 (19)	Mn(1)	0 3780 (1)	0 1933 (1	0.0105(1)	1.42(4)
O(4)—Mn	(2)—O(5)	75.51 (15)	Mn(1) - O(4) - Mn(3)	116.44 (20)	Mn(2)	0.4778 (1)	0.2426 (1	0.1370 (1)	1.79 (4)
O(4)—Mn	(2)—0(7)	99.08 (17)	Mn(2)—O(4)—Mn(3)	119.43 (19)	Mn(3)	0.2794 (1)	0.2826 (1	0.1320 (1)	1.64 (4)
O(4)—Mn	(2)—O(22)	90.97 (17)	Mn(1)-O(5)-Mn(2)	90.19 (16)	O(4)	0.3775 (3)	0.2571 (2	2) 0.0716 (3)	1.7 (2)
O(4)—Mn	(2)—O(50)	94.68 (17)	Mn(1) - O(5) - C(6)	121.5 (4)	O(5)	0.4976 (3)	0.1885 (3	3) 0.0339 (3)	1.8 (2)
O(4)—Mn	(2) = O(86)	168.78 (18)	Mn(2) = O(5) = C(6) $Mn(2) = O(7) = C(6^{1})$	146.3 (4)	C(6)	0.5400 (5)	0.1/58 (4	-0.0203(6)	2.0(3)
O(5)—Min	(2) = 0(7)	79 41 (17)	Mn(2) = O(7) = C(0) Mn(1) = O(20) = C(21)	130.2 (4)	C(8)	0.5953 (5)	0.1316 (4	-0.0036(6)	2.2 (3)
O(5)—Mn	(2) - O(50)	163.54 (17)	Mn(2) - O(22) - C(21)	128.5 (4)	C(9)	0.6470 (6)	0.1192 (5	5) -0.0588 (6)	3.5 (4)
O(5)—Mn	(2)—O(86)	93.74 (18)	Mn(1)-O(35)-C(36)	130.4 (4)	C(10)	0.6967 (6)	0.0765 (5) -0.0471 (7)	3.8 (4)
O(7)—Mn	(2)—O(22)	163.91 (19)	$Mn(3) - O(37) - C(36^{1})$	128.6 (4)	C(11)	0.6927 (6)	0.0473 (4	4) 0.0194 (7)	3.7 (4)
O(7)—Mn	(2)—O(50)	103.84 (18)	Mn(2) = O(50) = C(51)	126.0 (4)	C(12)	0.6417 (6)	0.0599 (4	4) 0.0747 (7)	3.0 (3)
O(7)—Mn	(2) = O(86)	84.06 (19)	Mn(3) = O(52) = O(51) Mn(1) = O(65) = Mn(3)	126.0 (5)	C(13)	0.5928 (5)	0.1026 (4	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	2.0(3)
O(22)M	n(2) = O(30) n(2) = O(86)	83 79 (19)	$Mn(1) \longrightarrow O(03) \longrightarrow O(03)$	120 2 (10)	O(14) C(15)	0.3390 (3)	0.1422 (.	(4) = 0.0931(4)	1.9(2) 1.8(3)
O(50)—M	n(2) - O(86)	95.02 (20)	Mn(3) - O(65) - C(66)	146.5 (4)	O(16)	0.4328 (3)	0.1701 (2	2) 0.1895 (3)	1.8 (2)
O(4)—Mn	(3)0(37)	89.50 (16)	$Mn(3) = O(67) = C(66^{i})$	126.1 (4)	C(17)	0.3535 (5)	0.0975 (4	4) 0.2122 (6)	2.0 (3)
O(4)—Mn	(3)—O(52)	90.78 (17)	Mn(2)-O(86)-C(87)	136.7 (6)	C(18)	0.3108 (5)	0.0563 (4	4) 0.1831 (6)	2.4 (3)
O(4)—Mn	(3)—O(65)	76.37 (16)	Mn(3) - N(80) - C(81)	123.2 (4)	C(19)	0.2832 (6)	0.0148 (4	4) 0.2307 (7)	3.3 (4)
O(4)—Mn	(3)—0(67)	98.48 (16)	Mn(3) - N(80) - C(85)	119.9 (5)	C(20)	0.2969 (6)	0.0180 (4	4) 0.3089 (6) 4) 0.3388 (6)	3.2 (3)
	Sym	metry code: (i) $2 - x, y, \frac{1}{2} - z$.		C(21)	0.3373(3)	0.0394 (4	4) 0.3388 (0) 1) 0.2905 (6)	19(3)
					O(23)	0.4399 (4)	0.2869 (3) 0.2303 (4)	2.6 (2)
C					C(24)	0.3820 (6)	0.2797 (4	4) 0.2677 (5)	2.4 (3)
Compo	una (2)				O(25)	0.3221 (4)	0.2636 (3) 0.2414 (3)	2.3 (2)
Crystal of	data				C(26)	0.3860 (6)	0.2944 (4	4) 0.3505 (6)	3.2 (3)
[Mn.O.	(C-H-O-)	_	Mo Ka radiation		C(27)	0.4527 (7)	0.2993 (b) 0.3874 (7)	4.3 (4)
	(C/11502/10		$\lambda = 0.71060 \text{ Å}$		C(28) C(20)	0.4589 (8)	0.3130 (() U.4019(8) 5) 0.5027(7)	0.0 (3) 6 3 (6)
(C_2H_2)	317/4]		A = 0.71009 A		C(29)	0.3774 (10)	0.5200 (0	0.3021(1)	0.5 (0)

Compound (2)

Crystal data

$[Mn_6O_2(C_7H_5O_2)_{10}]$	Mo K
$(C_2H_3N)_4$]	$\lambda = 0$

C(30)	0.3314 (9)	0.3192 (6)	0.4714 (7)	6.4 (6)
C(31)	0.3225 (8)	0.3031 (6)	0.3914 (7)	5.0 (4)
O(32)	0.2590 (3)	0.1861 (2)	-0.0103(4)	1.7 (2)
C(33)	0.2155 (5)	0.1830 (4)	0.0450 (5)	1.6 (3)
O(34)	0.2180 (3)	0.2122 (2)	0.1050 (3)	1.8 (2)
C(35)	0.1559 (5)	0.1417 (4)	0.0432 (5)	1.8 (3)
C(36)	0.1556 (5)	0.1018 (4)	-0.0144 (6)	2.4 (3)
C(37)	0.1003 (6)	0.0634 (5)	-0.0152 (7)	4.0 (4)
C(38)	0.0474 (7)	0.0640 (5)	0.0412 (7)	4.1 (4)
C(39)	0.0482 (6)	0.1018 (4)	0.0964 (7)	2.9 (3)
C(40)	0.1024 (5)	0.1409 (4)	0.0980 (6)	2.2 (3)
O(41)	0.3202 (3)	0.3635 (2)	0.1505 (4)	2.1 (2)
C(42)	0.3735 (5)	0.1160 (4)	-0.1189 (5)	1.8 (2)
O(43)	0.3984 (3)	0.1298 (2)	-0.0533 (4)	1.7 (2)
C(44)	0.4140 (5)	0.0706 (3)	-0.1567 (5)	1.7 (3)
C(45)	0.3944 (5)	0.0544 (4)	-0.2287 (5)	2.0(3)
C(46)	0.4303 (6)	0.0125 (5)	-0.2651 (6)	3.4 (3)
C(47)	0.4868 (6)	-0.0135 (5)	-0.2273 (7)	4.0 (4)
C(48)	0.5071 (6)	0.0031 (4)	-0.1560 (6)	2.8 (3)
C(49)	0.4714 (5)	0.0446 (4)	-0.1196 (6)	2.5 (3)
N(50)	0.5833 (4)	0.2167 (3)	0.1906 (5)	2.6 (3)
C(51)	0.6375 (6)	0.1964 (4)	0.1999 (6)	2.3 (3)
C(52)	0.7057 (6)	0.1700 (5)	0.2133 (6)	3.1 (3)
N(53)	0.1755 (4)	0.3174 (3)	0.1835 (5)	2.4 (3)
C(54)	0.1299 (6)	0.3429 (4)	0.2083 (6)	2.3 (3)
C(55)	0.0705 (6)	0.3757 (4)	0.2393 (7)	3.7 (4)

Table 4. Selected geometric parameters (Å, °) for (2)

	0	F	J
$Mn(1)$ $Mn(1^{i})$	2.807 (3)	Mn(2)O(4)	2.203 (6)
Mn(1)— $Mn(2)$	3.122 (3)	Mn(2)O(5)	2.271 (6)
$Mn(1) - Mn(3^{i})$	3.142 (3)	Mn(2)O(7)	2.115 (6)
$Mn(1)$ — $Mn(2^i)$	3.538 (3)	Mn(2)O(16)	2.169 (6)
Mn(1) - Mn(3)	3.554 (3)	Mn(2)—O(23)	2.082 (7)
Mn(2)Mn(3)	3.789 (3)	Mn(2)N(50)	2.252 (9)
$Mn(1) - O(4^i)$	1.883 (6)	Mn(3)—O(4)	2.187 (6)
Mn(1)—O(4)	1.895 (6)	Mn(3)O(25)	2.122 (6)
Mn(1)—O(5)	2.246 (6)	Mn(3)—O(32 ⁱ)	2.294 (6)
Mn(1)—O(14)	1.970 (6)	Mn(3)O(34)	2.120 (6)
Mn(1)O(32)	2.232 (6)	Mn(3)O(41)	2.148 (6)
Mn(1)—O(43)	1.955 (6)	Mn(3)N(53)	2.283 (8)
$O(4^{i})$ —Mn(1)—O(4)	84.04 (26)	O(4)-Mn(3)-N(53)	172.88 (27)
$O(4^{i})$ $Mn(1)$ $O(5)$	100.27 (25)	O(25)Mn(3)O(32 ⁱ)	166.33 (23)
O(4)—Mn(1)—O(5)	86.92 (25)	O(25)Mn(3)O(34)	102.68 (24)
$O(4^{i})$ -Mn(1)-O(14)	169.76 (27)	O(25)Mn(3)O(41)	86.46 (25)
O(4)Mn(1)O(14)	95.85 (26)	O(25)Mn(3)N(53)	92.13 (27)
$O(4^{i})$ —Mn(1)—O(32)	85.53 (24)	$O(32^{i})$ — $Mn(3)$ — $O(34)$	88.79 (22)
O(4)Mn(1)O(32)	98.78 (25)	$O(32^{i})$ Mn(3)O(41)	83.56 (23)
O(4 ⁱ)—Mn(1)—O(43)	94.65 (26)	O(32 ⁱ)—Mn(3)—N(53)	95.97 (25)
O(4)Mn(1)O(43)	169.16 (26)	O(34)—Mn(3)—O(41)	167.06 (25)
O(5)—Mn(1)—O(14)	89.94 (24)	O(34)—Mn(3)—N(53)	86.81 (26)
O(5)Mn(1)O(32)	172.31 (23)	O(41)— $Mn(3)$ — $N(53)$	83.64 (27)
O(5)—Mn(1)—O(43)	82.72 (24)	Mn(1) - O(4) - Mn(1')	95.96 (26)
O(14)Mn(1)O(32)	84.38 (24)	$Mn(1^{1})-O(4)-Mn(2)$	119.7 (3)
O(14)O(43)	87.35 (26)	Mn(1) - O(4) - Mn(2)	98.96 (26)
O(32)Mn(1)O(43)	91.83 (24)	$Mn(1^{1})-O(4)-Mn(3)$	100.78 (27)
O(4)—Mn(2)—O(5)	79.43 (22)	Mn(1) - O(4) - Mn(3)	120.9 (3)
O(4)—Mn(2)—O(7)	96.60 (23)	Mn(2) - O(4) - Mn(3)	119.30 (26)
O(4) - Mn(2) - O(16)	91.79 (22)	Mn(1) - O(5) - Mn(2)	87.45 (22)
O(4)Mn(2)O(23)	92.37 (25)	Mn(1) - O(5) - C(6)	118.9 (6)
O(4)—Mn(2)—N(50)	170.74 (28)	Mn(2)O(5)C(6)	146.8 (6)
O(5)Mn(2)O(7)	90.15 (24)	Mn(2)O(7)C(6')	132.0 (6)
O(5)Mn(2)O(16)	85.24 (23)	Mn(1) - O(14) - C(15)	130.7 (6)
O(5)Mn(2)O(23)	169.30 (25)	Mn(2) - O(16) - C(15)	125.9 (6)
O(5) - Mn(2) - N(50)	91.51 (27)	Mn(2)O(23)C(24)	128.1 (6)
O(7)—Mn(2)—O(16)	169.54 (24)	Mn(3) - O(25) - C(24)	125.8 (6)
O(7)-Mn(2)-O(23)	97.66 (26)	Mn(1) - O(32) - Mn(3')	87.91 (21)
O(7)—Mn(2)—N(50)	85.22 (26)	Mn(1) - O(32) - C(33)	120.4 (5)
O(16)Mn(2)O(23)	88.18 (25)	Mn(3') - O(32) - C(33)	146.9 (6)
O(16)Mn(2)N(50)	85.52 (26)	Mn(3) - O(34) - C(33)	131.5 (6)
O(23)—Mn(2)—N(50)	96.4 (3)	Mn(3) = O(41) = C(42')	126.1 (6)
O(4)—Mn(3)— $O(25)$	93.77 (24)	Mn(1) - O(43) - C(42)	130.9 (6)
O(4) - Mn(3) - O(32')	/7.48 (21)	Mn(2) - N(50) - C(51)	101.8(8)
O(4) - Mn(3) - O(34)	95.75 (23)	MI(3) = N(33) = C(34)	108.3 (8)
()(4) - Mn(3) - ()(41)	92.77 (23)		

Symmetry code: (i) $x, \frac{1}{2} - y, -z$.

Procedures employed by the Molecular Structure Center for data collection and structure solution and refinement have been described elsewhere (Chisholm, Folting, Huffman & Kirkpatrick, 1984). The structures were solved by direct methods and refined using difference Fourier techniques. Anisotropic displacement parameters were refined for all non-disordered non-H atoms [except C(42) in structure (2), which was refined isotropically] while H atoms were included in calculated positions with freely refining B_{iso} . Figures were generated using *ORTEP* (Johnson, 1965).

In addition to the molecule of interest, structure (1) was found to contain a well ordered molecule of acetone lying on a crystallographic twofold axis, and a well ordered molecule of Et₂O at a general position. At a different twofold axis, a number of peaks were observed that could not be positively identified: these were refined as C atoms (site occupancy 0.5), and for the purposes of the density calculations this region of the structure was assumed to represent a disordered molecule of acetone. Structure (2) contained no occluded solvent molecules. High displacement parameters on some benzoate aromatic C atoms of structure (2), notably C(27)-C(31), may be indicative of orientational disorder in these groups, thus accounting for the slightly high R value associated with this structure. This was not modelled, however, because of the relatively low ratio of the number of refined parameters to observed reflections in this refinement.

This work was funded by NIH grant GM-39083.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1000). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Baikie, A. R. E., Howes, A. J., Hursthouse, M. B., Quick, A. B. & Thornton, P. (1986). J. Chem. Soc. Chem. Commun. p. 1587.
- Blackman, A. G., Huffman, J. C., Lobkovsky, E. B. & Christou, G. (1992). Polyhedron, 11, 251-255.
- Chisholm, M. H., Folting, K., Huffman, J. C. & Kirkpatrick, C. C. (1984). Inorg. Chem. 23, 1021–1037.
- Christou, G. (1989). Acc. Chem. Res. 22, 328-335.
- Gambarotta, S., Pasquali, M., Floriani, C., Villa, A. C. & Guastini, C. (1981). *Inorg. Chem.* 20, 1173–1178.
- Gerbeleu, N. V., Batsanov, A. S., Timko, G. A., Struchkov, Yu. T., Indrichan, K. M. & Popovich, G. A. (1987). Dokl. Akad. Nauk SSSR, 294, 878–881.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Köhler, K., Roesky, H. W., Noltemeyer, M., Schmidt, H.-G., Freire-Erdbrügger, C. & Sheldrick, G. M. (1993). Chem. Ber. 126, 921– 926.
- Schake, A. R., Vincent, J. B., Li, Q., Boyd, P. D. W., Folting, K., Huffman, J. C., Hendrickson, D. N. & Christou, G. (1989). *Inorg. Chem.* 28, 1915–1923.
- Smith, G., O'Reilly, E. J., Kennard, C. H. L., Mak, T. C. W. & Yip, W. H. (1985). Polyhedron, 4, 451–455.
- Vaira, M. di, Stoppioni, P. & Mani, F. (1983). J. Organomet. Chem. 247, 95-104.
- Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801-2803.